Simplify a^3b^6 / a^2b^3 - a^4b^2
![Simplify a3b6 a2b3 a4b2 class=](https://us-static.z-dn.net/files/d08/dfb0303362f3686f613ee52a0bd97670.png)
Answer:
The answer is D [tex]\frac{(ab^4)}{b-a^2}[/tex]
Step-by-step explanation:
To answer this we have to factor the common terms in the denominator which are [tex]a^2[/tex] and [tex]b^2[/tex]
So we rewrite the expression as [tex]\frac{(a^3b^6)}{a^2b^2(b-a^2)}[/tex]
Then we simplify we do this by subtracting the exponents
[tex]a^3-a^2=a[/tex]
[tex]b^6-b^2=b^4[/tex]
Then take the parentheses away from [tex](b-a^2)[/tex]
[tex]\frac{(ab^4)}{b-a^2}[/tex]