Respuesta :
Answer:
[tex]$\lim_{x \to 0} \frac{2\cos(x)+1}{\sin^2 (x) } = \infty$[/tex]
and the limit does not exist
Step-by-step explanation:
We are given the following limit
[tex]$ \lim_{x \to 0} \frac{\sin(2x)+\sin(x)}{\sin^3 (x)} $[/tex]
We can't just merely consider
[tex]$ \lim_{x \to 0} f(x)=g(x) $[/tex]
and then solve
[tex]$ \lim_{x \to 0} \frac{\sin(2x)+\sin(x)}{\sin^3 (x)} = \frac{\sin(0)+\sin(0)}{\sin^3 (0)} =\frac{0}{0} =0$[/tex]
This is an indeterminate form. Wrong.
=========================================
We have the identity
[tex]\sin(2x) = 2\sin(x)\cos(x)[/tex], therefore we can substitute it in the limit
[tex]$ \lim_{x \to 0} \frac{\sin(2x)+\sin(x)}{\sin^3 (x)} = \lim_{x \to 0} \frac{2\sin(x)\cos(x)+\sin(x)}{\sin^3 (x)} $[/tex]
then
[tex]$ \lim_{x \to 0} \frac{2\sin(x)\cos(x)+\sin(x)}{\sin^3 (x)} = \lim_{x \to 0} \frac{\sin(x)(2\cos(x)+1)}{\sin^3 (x)} = \boxed{ \lim_{x \to 0} \frac{2\cos(x)+1}{\sin^2 (x)} }$[/tex]
Now, differently from the first case,
we have [tex]2\cos(x)+1 \longrightarrow 3[/tex] as [tex]x \longrightarrow 0[/tex] because [tex]\cos(0)=1[/tex]
On the other hand, [tex]\sin^2(x)\longrightarrow 0[/tex] as [tex]x \longrightarrow 0[/tex] because [tex]\sin(0)=0[/tex]
In fact,
[tex]$\lim_{x \to 0} \frac{2\cos(x)+1}{\sin^2 (x) } = \lim_{x \to 0} \frac{1}{\sin^2 (x) }\cdot (2\cos(x)+1) = \infty \cdot 3 = \infty $[/tex]
>> Answer
__________
[tex] \: [/tex]
Answer in the picture.
