The question is an illustration of permutation and combinations.
The given parameters are:
[tex]\mathbf{n = 7}[/tex]
[tex]\mathbf{r = 4}[/tex]
(a) Choose 4 of 7 paintings
Choosing 4 of 7 paintings implies combination.
So, we have:
[tex]\mathbf{^nC_r = \frac{n!}{(n - r)!r!}}[/tex]
Substitute values for n and r
[tex]\mathbf{^7C_4 = \frac{7!}{(7 - 4)!4!}}[/tex]
[tex]\mathbf{^7C_4 = \frac{7!}{3!4!}}[/tex]
Expand
[tex]\mathbf{^7C_4 = \frac{7 \times 6 \times 5 \times 4!}{3 \times 2 \times 1 \times 4 !}}[/tex]
[tex]\mathbf{^7C_4 = 35}[/tex]
Hence, the number of ways she can choose 4 out of the 7 paintings is 35
(b) Arrange 4 of 7 paintings
Arranging 4 of 7 paintings implies permutation.
So, we have:
[tex]\mathbf{^nP_r = \frac{n!}{(n - r)!}}[/tex]
Substitute values for n and r
[tex]\mathbf{^7P_4 = \frac{7!}{(7 - 4)!}}[/tex]
[tex]\mathbf{^7P_4 = \frac{7!}{3!}}[/tex]
Expand
[tex]\mathbf{^7P_4 = \frac{7 \times 6 \times 5 \times 4 \times 3!}{3!}}[/tex]
[tex]\mathbf{^7P_4 = 840}[/tex]
Hence, the number of ways she can arrange 4 out of the 7 paintings is 840
Read more about permutation and combinations at:
https://brainly.com/question/15301090