Answer:
x = 4 , y = 2
Step-by-step explanation:
Using the sine / tangent ratios in the right triangle and the exact values
sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] and tan60° = [tex]\sqrt{3}[/tex] , then
sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{2\sqrt{3} }{x}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )
x [tex]\sqrt{3}[/tex] = 4[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
x = 4
and
tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{2\sqrt{3} }{y}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by y )
y [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
y = 2