The volume of the cylinder is the amount of fruit juice it can contain.
The relationship between the volume and the surface area is:
[tex]\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}[/tex]
The given parameter is:
[tex]\mathbf{V = 0.946}[/tex]
The volume of a cylinder is calculated as:
[tex]\mathbf{V = \pi r^2 h}[/tex]
Make h the subject
[tex]\mathbf{h = \frac{V}{ \pi r^2}}[/tex]
The surface area (A) of a cylinder is:
[tex]\mathbf{A = \pi r^2 + \pi rh}[/tex]
Substitute [tex]\mathbf{h = \frac{V}{ \pi r^2}}[/tex]
[tex]\mathbf{A = \pi r^2 + \pi r \times \frac{V}{\pi r^2}}[/tex]
[tex]\mathbf{A = \pi r^2 + \frac{V}{r}}[/tex]
Differentiate
[tex]\mathbf{A' = 2\pi r - Vr^{-2}}[/tex]
Set to 0
[tex]\mathbf{2\pi r - Vr^{-2} = 0}[/tex]
Rewrite as:
[tex]\mathbf{ 2\pi r = Vr^{-2}}[/tex]
Multiply through by r^2
[tex]\mathbf{ 2\pi r^3 = V}[/tex]
Solve for r
[tex]\mathbf{r = \sqrt[3]{\frac{V}{2\pi}}}[/tex]
[tex]\mathbf{A = \pi r^2 + \frac{0.946}{r}}[/tex]
So, we have:
[tex]\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}[/tex]
Hence, the relationship between the volume and the surface area is:
[tex]\mathbf{A = \pi (\sqrt[3]{\frac{V}{2\pi}})^2 + \frac{0.946}{(\sqrt[3]{\frac{V}{2\pi}})}}[/tex]
Read more about surface areas and volumes at:
https://brainly.com/question/3628550