Which ordered pairs are solutions to the inequality 2x +y > -4? Select each correct answer. (0, 1) (-3,0) (4 – 12) (-1, -1) (5,- 12 )​

Respuesta :

Answer:

(5,-12)

(-3,0)

(-1,-1)

Step-by-step explanation:

For (4, −12): 2(4) - 12 = 8 - 12 = -4                  [false]

For (−3, 0): 2(-3) = -6 < -4                                [false]

For (5, −12): 2(5) - 12 = 10 - 12 = -2 > -4         [true]

For (0, 1): 2(0) + 1 = 1 > -4                              [true]

For (−1, −1): 2(-1) - 1 = -2 - 1 = -3 > -4            [true]

Therefore, (5, -12), (0, 1) and (-1, -1) satisfies the inequality 2x + y > -4

For (7, 12): 12 - 2(7) = 12 - 14 = -2 > -3                   [false]

For (0, −2): -2 - 2(0) = -2 > -3                                   [false]

For (5, −3): -3 - 2(5) = -3 - 10 = -13 < -3                   [true]

For (−6, −3): -3 - 2(-6) = -3 + 12 = 9 > -3                  [false]

For (1, −1): -1 - 2(1) = -1 - 2 = -3                              [true]

Therefore, (5, -3) and (1, -1) satisfy the inequality y - 2x ≤ -3

The situation is represented by 2.25x + 2.65y ≥ 8

RELAXING NOICE
Relax