Respuesta :

[tex]\large\underline{\sf{Solution-}}[/tex]

Given:

[tex] \sf \longmapsto x + \dfrac{1}{9x} = 1[/tex]

Multiplying both sides by 3, we get:

[tex] \sf \longmapsto 3 \bigg(x + \dfrac{1}{9x} \bigg) = 3 \times 1[/tex]

[tex] \sf \longmapsto 3x + \dfrac{1}{3x} = 3[/tex]

Cubing on both sides, we get:

[tex] \sf \longmapsto \bigg(3x + \dfrac{1}{3x} \bigg)^{3} = {3}^{3} [/tex]

[tex] \sf \longmapsto {(3x)}^{3} + \bigg(\dfrac{1}{3x} \bigg)^{3} + \bigg(3 \times {(3x)}^{2} \times \dfrac{1}{3x} \bigg) + \bigg(3 \times 3x\times \bigg( \dfrac{1}{3x} \bigg)^{2} \bigg) = {3}^{3} [/tex]

[tex] \sf \longmapsto 27{x}^{3} + \dfrac{1}{27x^{3}} + 9x + \dfrac{1}{x} = {3}^{3} [/tex]

[tex] \sf \longmapsto 27{x}^{3} + \dfrac{1}{27x^{3}} + 9 \bigg(x + \dfrac{1}{9x} \bigg) = 27[/tex]

As we know that:

[tex] \sf ,\red\longmapsto x + \dfrac{1}{9x} = 1[/tex]

We get:

[tex] \sf \longmapsto 27{x}^{3} + \dfrac{1}{27x^{3}} + 9 \times 1 = 27[/tex]

[tex] \sf \longmapsto 27{x}^{3} + \dfrac{1}{27x^{3}} + 9 = 27[/tex]

[tex] \sf \longmapsto 27{x}^{3} + \dfrac{1}{27x^{3}} = 18 \: Ans.[/tex]

RELAXING NOICE
Relax