Respuesta :

Answer:

Either [tex]x = (-\pi / 6)[/tex] or [tex]x = (\pi / 6)[/tex].

Step-by-step explanation:

Angle sum identity for cosine:

[tex]\cos(a + b) = \cos(a)\, \cos(b) - \sin(a) \, \sin(b)[/tex].

Double-angle identity for cosine and sine:

[tex]\begin{aligned}& \cos(2\, a)\\ &= \cos^{2}(a) - \sin^{2} (a) \\ &= (\cos^{2}(a) + \sin^{2}(a) - 2\, \sin^{2}(a) \\ &= 1 - 2\, \sin^{2}(a)\end{aligned}[/tex].

[tex]\sin(2\, a) = 2\, \cos(a) \, \sin(a)[/tex].

The secant of an angle is the inverse reciprocal of the cosine of that angle:

[tex]\displaystyle \text{$\sec(x) = \frac{1}{\cos(x)}$ if $\cos(x) \ne 0$}[/tex].

Apply these identities to rewrite the left-hand side of the equation.

[tex]\begin{aligned} & \sec(x) \, \cos(3\, x) \\ =\; & \frac{1}{\cos(x)} \cdot \cos(3\, x) \\ =\; & \frac{1}{\cos(x)} \cdot (\cos(x)\, \cos(2\, x) - \sin(x)\, \sin(2\, x)) \\ =\; &\cos(2\, x) \\ & - \frac{1}{\cos(x)} \cdot (\sin(x)\, \sin(2\, x)) \\ =\; & \cos(2\, x)\\ & - \frac{1}{\cos(x)} \cdot (\sin(x) \cdot (2\, \sin(x)\, \cos(x))) \\ =\; & \cos(2\, x) - 2\, \sin^{2}(x) \\ =\; & (1 - 2\, \sin^{2}(x)) - 2\, \sin^{2}(x) \\ =\; &1 - 4\, \sin^{2}(x) \end{aligned}[/tex].

Solve the rewritten equation:

[tex]\displaystyle \sin^{2}(x) = \frac{1}{4}[/tex].

Either [tex]\sin(x) = (1/2)[/tex] or [tex]\sin(x) = (-1/2)[/tex].

The question required that [tex](-\pi / 2) \le x \le (\pi / 2)[/tex]. The sine function is one-to-one over this range. In other words, for each [tex]y[/tex] between [tex](-1)[/tex] and [tex]1[/tex], there is exactly one [tex]x[/tex] between [tex](-\pi / 2)[/tex] and [tex](\pi / 2)[/tex] such that [tex]\sin(x) = y[/tex].

If [tex]\sin(x) = (-1/2)[/tex] and [tex](-\pi / 2) \le x \le (\pi / 2)[/tex], then [tex]x = (-\pi / 6)[/tex].

Otherwise, if [tex]\sin(x) = (1/2)[/tex] and [tex](-\pi / 2) \le x \le (\pi / 2)[/tex], then [tex]x = (\pi / 6)[/tex],

Verify that [tex]\cos(x) \ne 0[/tex] for either of the two [tex]x[/tex] values, such that the [tex]\sec(x)[/tex] in the original equation takes a real value.

RELAXING NOICE
Relax