will make brainiest if possible need explanation too :)

The points A, B, C and D lie in order on a straight line.
AB : BD = 1:4
AC: CD = 7:13
Work out AB : BC: CD
Give your answer in its simplest form.

will make brainiest if possible need explanation too The points A B C and D lie in order on a straight line AB BD 14 AC CD 713 Work out AB BC CD Give your answe class=

Respuesta :

Answer:

AB : BC : CD = 4 : 3 : 13

Step-by-step explanation:

AC:CD = 7:13

AC+CD = 7+13 = 20

AB:BD = 1:4

AB = (20 / (1+4))*1 = 4   ... 1/5 0f 20

BD = (20 / (1+4))*4 = 16  ... 4/5 of 20

BC = BD - CD = 16-13 = 3

AB : BC : CD = 4 : 3 : 13

Ver imagen lynnkc2000

Lines can be divided in ratios

The ratio is: AB : BC : CD = 4 : 3 : 13

The given parameters are:

[tex]\mathbf{AB : BD = 1:4}[/tex]

[tex]\mathbf{AC: CD = 7:13}[/tex]

Using unit ratio, we have:

[tex]\mathbf{AC+CD = 7+13}[/tex]

[tex]\mathbf{AC+CD = 20}[/tex]

This gives

[tex]\mathbf{AD = 20}[/tex]

[tex]\mathbf{AB : BD = 1:4}[/tex] implies that:

[tex]\mathbf{AB = \frac{1}{1 + 4} \times AD}[/tex]

[tex]\mathbf{AB = \frac{1}{5} \times 20}[/tex]

[tex]\mathbf{AB = 4}[/tex]

Also, we have:

[tex]\mathbf{BD = \frac{4}{1 + 4} \times AD}[/tex]

[tex]\mathbf{BD = \frac{4}{5} \times 20}[/tex]

[tex]\mathbf{BD = 16}[/tex]

AC : CD = 7 : 13 means that:

CD = 13

So, we have:

[tex]\mathbf{BC + CD = BD}[/tex]

This gives

[tex]\mathbf{BC + 13 = 16}[/tex]

Subtract 13 from both sides

[tex]\mathbf{BC = 3}[/tex]

So, we have:

[tex]\mathbf{AB = 4}[/tex]

[tex]\mathbf{BC = 3}[/tex]

CD = 13

Hence, the ratio is:

AB : BC : CD = 4 : 3 : 13

Read more about line ratios at:

https://brainly.com/question/19608914