Respuesta :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Here's the solution :
- [tex] ({5x}^{4} - 3 {x}^{3} + 2) - ( - 3 {x}^{4} + 2 {x}^{2} - 5)[/tex]
- [tex]5 {x}^{4} - 3 {x}^{3} + 2 + 3 {x}^{4} - 2 {x}^{2} + 5[/tex]
- [tex]8 {x}^{4} - 3 {x}^{3} - 2 {x}^{2} + 7[/tex]
Answer:
8[tex]x^{4}[/tex]-3[tex]x^{3}[/tex]-2[tex]x^{2}[/tex]+7
Step-by-step explanation:
The first thing to do in this problem is distribute the negative in front of ([tex]-3x^4+2x^2-5[/tex]). This makes it [tex]3x^4-2x^2+5[/tex].
From here you can remove the parenthesis and combine like terms. 5[tex]x^{4}[/tex] combines with 3[tex]x^{4}[/tex] to get 8[tex]x^{4}[/tex] and 2 and 5 combine to get 7. The -3[tex]x^{3}[/tex] and -2[tex]x^{2}[/tex] cannot combine with anything since they don't share any like terms.
Using the combinations, bring all of the terms back together and you get 8[tex]x^{4}[/tex]-3[tex]x^{3}[/tex]-2[tex]x^{2}[/tex]+7