Respuesta :
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Let's find the slope :
taking :
- [tex]y_2 = 6[/tex]
- [tex]y_1 = 8[/tex]
- [tex]x_2 = 4[/tex]
- [tex]x_1 = - 2[/tex]
now, we know the formula to find the slope, that is :
- [tex] \dfrac{y_2 - y_1}{x_2 -x_1 } [/tex]
- [tex] \dfrac{6 - 8}{4 - ( - 2)} [/tex]
- [tex] \dfrac{ - 2}{ 6} [/tex]
- [tex] - \dfrac{ 1}{3} [/tex]
Answer:
[tex]\boxed {-\frac{1}{3}}[/tex]
Step-by-step explanation:
[tex]\boxed {\sf{Slope}=\cfrac{y_2-y_1}{x_2-x_1}}[/tex]
[tex]\sf \left(x_1,\:y_1\right)=\left(-2,\:8\right)[/tex]
[tex]\sf \left(x_2,\:y_2\right)=\left(4,\:6\right)[/tex]
__________________
[tex]\sf slope \:(m)=\cfrac{6-8}{4-\left(-2\right)}[/tex]
[tex]\boxed {\sf Subtract \:the \:numbers:-}[/tex]
[tex]\sf Slope\:(m)=-\cfrac{1}{3}[/tex]
__________________