Respuesta :

Parallel sides of parallelogram are equal in length

[tex]\\ \sf\longmapsto AD=BC[/tex]

[tex]\\ \sf\longmapsto 6x+14=9x-4[/tex]

[tex]\\ \sf\longmapsto 9x-6x=14+4[/tex]

[tex]\\ \sf\longmapsto 3x=18[/tex]

[tex]\\ \sf\longmapsto x=6[/tex]

AD=6x+14=6(6)+14=36+14=50

Option D

The opposite sides of parallelogram are equal in length, so we can infer that :

  • BC = AD

now, let's solve for value of x :

  • [tex]9x - 4 = 6x + 14[/tex]

  • [tex]9x - 6x = 14 + 4[/tex]

  • [tex]3x = 18[/tex]

  • [tex]x = 18 \div 3[/tex]

  • [tex]x = 6[/tex]

we have to find the measure of AD,

  • [tex]6x + 14[/tex]

Plugging the value of x as 6 :

  • [tex](6 \times 6) + 14[/tex]

  • [tex] 36 + 14[/tex]

  • [tex]50[/tex]

The Correct option is D. 50

ACCESS MORE