Respuesta :
[tex] \large\underline{\sf{Solution-}}[/tex]
The given curve is
[tex]\rm :\longmapsto\: {x}^{2} - 2y = 0[/tex]
can be rewritten as
[tex]\rm :\longmapsto\: {x}^{2} = 2y[/tex]
It represents a upper parabola having vertex at (0, 0) and axis along y - axis.
So, the required area bounded by the curve between y = 8 with respect to y - axis is
[tex]\rm \: = \: 2\displaystyle\int_0^8\rm x \: dy[/tex]
[tex]\rm \: = \: 2\displaystyle\int_0^8\rm \sqrt{2y} \: dy[/tex]
[tex]\rm \: = \: 2 \sqrt{2} \displaystyle\int_0^8\rm \sqrt{y} \: dy[/tex]
[tex]\rm \: = \: 2 \sqrt{2} \displaystyle\int_0^8\rm {\bigg(y\bigg) }^{\dfrac{1}{2} } \: dy[/tex]
[tex]\rm \: = \: 2 \sqrt{2} \times \dfrac{2}{3} {\bigg(y\bigg) }^{\dfrac{3}{2} }\bigg |_0^8[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} {\bigg(8\bigg) }^{\dfrac{3}{2} }[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} {\bigg(2 \times 2 \times 2\bigg) }^{\dfrac{3}{2} }[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} {\bigg(2 \times 2 \times \sqrt{2} \times \sqrt{2} \bigg) }^{\dfrac{3}{2} }[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} {\bigg((2\sqrt{2})^{2} \bigg) }^{\dfrac{3}{2} }[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} {\bigg((2\sqrt{2})^{3} \bigg) }[/tex]
[tex]\rm \: = \: \dfrac{4 \sqrt{2} }{3} \times 16 \sqrt{2} [/tex]
[tex]\rm \: = \: \dfrac{128}{3} \: square \: units[/tex]
So, Option (2) is correct
![Ver imagen SalmonWorldTopper](https://us-static.z-dn.net/files/d52/c0e540a7d5c19253066bd678bc57d5ea.jpg)