Respuesta :
[tex]x^2-3x=-8\\\\x^2-3x+2.25=-5.75\\\\(x-1.5)^2=-5.75\\x-1.5=\pm i\sqrt{5.75}\\\boxed{x=1.5 \pm i\sqrt{5.75}}[/tex]
Not the prettiest but you can simplify
Answer:
[tex] \displaystyle \large{ x = \frac{ 3 \pm \sqrt{ 23}i }{2} }[/tex]
Step-by-step explanation:
We are given the equation:-
[tex] \displaystyle \large{ {x}^{2} - 3x = - 8}[/tex]
First, arrange the expression to the standard form.
Recall the standard form of Quadratic Equation:-
[tex] \displaystyle \large{a {x}^{2} + bx + c = 0}[/tex]
Therefore, add both sides by 8.
[tex] \displaystyle \large{ {x}^{2} - 3x + 8= - 8 + 8} \\ \displaystyle \large{ {x}^{2} - 3x + 8= 0}[/tex]
Since we know that the solutions are complex. Therefore, we apply our Quadratic Formula.
Quadratic Formula
[tex] \displaystyle \large{ x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} }[/tex]
From the equation, the value of:
- a = 1
- b = -3
- c = 8
Substitute these values in the formula.
[tex] \displaystyle \large{ x = \frac{ - ( - 3)\pm \sqrt{ {( - 3)}^{2} - 4(1)(8)} }{2(1)} } \\ \displaystyle \large{ x = \frac{ 3\pm \sqrt{ 9 -32} }{2} } \\ \displaystyle \large{ x = \frac{ 3 \pm \sqrt{ - 23} }{2} }[/tex]
Make sure to recall every necesscary and important fundamental math such as multiplying with negative, exponents, etc.
Imaginary Unit
[tex] \displaystyle \large{i = \sqrt{ - 1} } \\ \displaystyle \large{ {i}^{2} = - 1} \\ \displaystyle \large{ {i}^{3} = - \sqrt{ - 1} = - i} \\ \displaystyle \large{ {i}^{4} = {i}^{2} \times {i}^{2} = ( - 1)( - 1) = 1}[/tex]
From √-23, factor √-1 out.
[tex] \displaystyle \large{ x = \frac{ 3 \pm \sqrt{ 23} \sqrt{ - 1} }{2} }[/tex]
Convert √-1 to i.
[tex] \displaystyle \large{ x = \frac{ 3 \pm \sqrt{ 23}i }{2} }[/tex]
And we're done!