A rectangular lawn is 2 m longer than it is wide.
The area of the lawn is 21 m². The gardener wants to edge the lawn with edging strips
which are sold in lengths of 13 m. How many will she need to buy?

Respuesta :

Let's breadth be x

  • Length be x+2

ATQ

[tex]\\ \sf\longmapsto x(x+2)=21[/tex]

[tex]\\ \sf\longmapsto x^2+2x=21[/tex]

  • Use completing the square method

[tex]\\ \sf\longmapsto 4(x^2+2x)=4(21)[/tex]

[tex]\\ \sf\longmapsto 4x^2+8x=84[/tex]

[tex]\\ \sf\longmapsto (2x)^2+2(2x)(2)=84[/tex]

[tex]\\ \sf\longmapsto (2x)^2+2(2x)(2)+2^2=2^2+84[/tex]

[tex]\\ \sf\longmapsto (2x+2)^2=88[/tex]

[tex]\\ \sf\longmapsto 2x+2=\pm\sqrt{88}[/tex]

  • As it's dimensions we will take positive

[tex]\\ \sf\longmapsto 2x+2\approx 9.7[/tex]

[tex]\\ \sf\longmapsto 2x=9.7-2=7.7[/tex]

[tex]\\ \sf\longmapsto x=3.8[/tex]

  • x+2=3.8+2=5.8

Now

[tex]\\ \sf\longmapsto Perimeter=2(L+B)[/tex]

[tex]\\ \sf\longmapsto perimeter=2(3.8+5.8)[/tex]

[tex]\\ \sf\longmapsto perimeter=2(9.6)[/tex]

[tex]\\ \sf\longmapsto Perimeter=19.2m[/tex]

  • Length of 1 strip=13m

Total strips

[tex]\\ \sf\longmapsto \dfrac{19.2}{13}[/tex]

[tex]\\ \sf\longmapsto 1.47strips[/tex]

  • She needs 2 strips

Answer:

• width is y metres

• length is (2 + y) metres

[tex]{ \tt{area = length \times width}} \\ \\ { \rm{21 = (2 + y)(y)}} \\ \\ { \rm{21 = 2y + {y}^{2} }} \\ \\ { \rm{ {y}^{2} + 2y - 21 = 0 }} \\ \\ { \rm{ \dashrightarrow \: by \: factorisation : }} \\ \\ { \boxed{ \rm{y \approx4 \: and \: - 6}}}[/tex]

• Therefore, length = 4 + 2 = 6 meters

• The gardener will need;

[tex] = { \rm{ \frac{13}{6} }} \\ \\ = { \underline{ \underline{ \rm{ \: 3 \: strips \: \: }}}}[/tex]

ACCESS MORE