Respuesta :
Let's breadth be x
- Length be x+2
ATQ
[tex]\\ \sf\longmapsto x(x+2)=21[/tex]
[tex]\\ \sf\longmapsto x^2+2x=21[/tex]
- Use completing the square method
[tex]\\ \sf\longmapsto 4(x^2+2x)=4(21)[/tex]
[tex]\\ \sf\longmapsto 4x^2+8x=84[/tex]
[tex]\\ \sf\longmapsto (2x)^2+2(2x)(2)=84[/tex]
[tex]\\ \sf\longmapsto (2x)^2+2(2x)(2)+2^2=2^2+84[/tex]
[tex]\\ \sf\longmapsto (2x+2)^2=88[/tex]
[tex]\\ \sf\longmapsto 2x+2=\pm\sqrt{88}[/tex]
- As it's dimensions we will take positive
[tex]\\ \sf\longmapsto 2x+2\approx 9.7[/tex]
[tex]\\ \sf\longmapsto 2x=9.7-2=7.7[/tex]
[tex]\\ \sf\longmapsto x=3.8[/tex]
- x+2=3.8+2=5.8
Now
[tex]\\ \sf\longmapsto Perimeter=2(L+B)[/tex]
[tex]\\ \sf\longmapsto perimeter=2(3.8+5.8)[/tex]
[tex]\\ \sf\longmapsto perimeter=2(9.6)[/tex]
[tex]\\ \sf\longmapsto Perimeter=19.2m[/tex]
- Length of 1 strip=13m
Total strips
[tex]\\ \sf\longmapsto \dfrac{19.2}{13}[/tex]
[tex]\\ \sf\longmapsto 1.47strips[/tex]
- She needs 2 strips
Answer:
• width is y metres
• length is (2 + y) metres
[tex]{ \tt{area = length \times width}} \\ \\ { \rm{21 = (2 + y)(y)}} \\ \\ { \rm{21 = 2y + {y}^{2} }} \\ \\ { \rm{ {y}^{2} + 2y - 21 = 0 }} \\ \\ { \rm{ \dashrightarrow \: by \: factorisation : }} \\ \\ { \boxed{ \rm{y \approx4 \: and \: - 6}}}[/tex]
• Therefore, length = 4 + 2 = 6 meters
• The gardener will need;
[tex] = { \rm{ \frac{13}{6} }} \\ \\ = { \underline{ \underline{ \rm{ \: 3 \: strips \: \: }}}}[/tex]