Respuesta :

[tex]f'(x)=2\ln(2x+7) + \left(\dfrac{2x+1}{2x+7}\right)[/tex]

[tex]f'(0) = 2\ln{7} + \frac{1}{7}[/tex]

Step-by-step explanation:

Recall that the derivative of a product of two functions [tex]f(x)=g(x)h(x)[/tex] is defined as

[tex]\dfrac{df(x)}{dx}=f'(x)= \dfrac{dg(x)}{dx}h(x) + g(x)\dfrac{dh(x)}{dx}[/tex]

Let [tex]g(x)=2x+1[/tex] and [tex]h(x)=\ln(2x+7)[/tex] so f'(x) is

[tex]f'(x)=2\ln(2x+7) + \left(\dfrac{2x+1}{2x+7}\right)[/tex]

Evaluated at x = 0, the value of the derivative is

[tex]f'(0) = 2\ln{7} + \frac{1}{7}[/tex]

ACCESS MORE

Otras preguntas