Respuesta :
The formula used to solve this is:
E = hc/λ
The given values can then be subsituted into the equation to sovle for the energy:
E = (6.63 x 10^-34 J-s) (3 x 10^8 m/s) / 435 x10^-9 m
E = 4.5724 x 10^-19 J
converting to electron volts
E = 4.5724 x 10^-19 J * 1.00eV / 1.6 * 10^-19 J
E = 2.86 eV
The closest energy line is
E2
E = hc/λ
The given values can then be subsituted into the equation to sovle for the energy:
E = (6.63 x 10^-34 J-s) (3 x 10^8 m/s) / 435 x10^-9 m
E = 4.5724 x 10^-19 J
converting to electron volts
E = 4.5724 x 10^-19 J * 1.00eV / 1.6 * 10^-19 J
E = 2.86 eV
The closest energy line is
E2
Explanation:
Wavelength in an emission spectrum, [tex]\lambda=435\ nm=435\times 10^{-9}\ m[/tex]
The energy of an electron is given by :
[tex]E=\dfrac{hc}{\lambda}[/tex]
Where
h is the Planck's constant
c is the speed of light
For 435 nm, the energy of the electron will be :
[tex]E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8\ m/s}{435\times 10^{-9}}[/tex]
[tex]E=4.57\times 10^{-19}\ J[/tex]
We know that [tex]1\ eV=1.6\times 10^{-19}\ J[/tex]
So, [tex]E=\dfrac{4.57\times 10^{-19}}{1.6\times 10^{-19}}[/tex]
So, E = 2.86 eV
The energy of the electron dropping from one energy level is 2.86 eV. We know that,
[tex]\dfrac{hc}{\lambda}=E_{n_2}-E_{n_1}[/tex]
From the given energy levels :
[tex]E_5-E_2=-0.544-(-3.403)[/tex]
[tex]E_5-E_2=2.859\ eV[/tex]
So, the transition must be from E₅ to E₂. Hence, this is the required solution.