Y is a differentiable function of x. Choose the alternative that is the derivative dy / dx.

[tex]x^3-y^3=1[/tex]

a) [tex]x[/tex]
b) [tex]3x^2[/tex]
c) [tex]\sqrt{3x^2}[/tex]
d) [tex]x^2 / y^2[/tex]
e) [tex]\frac{3x^2-1}{y^2}[/tex]

Respuesta :

Differentiating both sides of

[tex]x^3-y^3=1[/tex]

with respect to x yields (using the chain rule)

[tex]3x^2 - 3y^2 \dfrac{\mathrm dy}{\mathrm dx} = 0[/tex]

Solve for dy/dx :

[tex]3x^2 - 3y^2 \dfrac{\mathrm dy}{\mathrm dx} = 0 \\\\ 3y^2\dfrac{\mathrm dy}{\mathrm dx} = 3x^2 \\\\ \dfrac{\mathrm dy}{\mathrm dx} = \dfrac{3x^2}{3y^2} = \dfrac{x^2}{y^2}[/tex]

The answer is then D.

ACCESS MORE