Respuesta :
The question is an illustration of composite functions.
- Functions c(n) and h(n) are [tex]\mathbf{c(n) = 5000 + 250n}[/tex] and [tex]\mathbf{n(h) = 5h}[/tex]
- The composite function c(n(h)) is [tex]\mathbf{c(n(h)) = 5000 + 1250h}[/tex]
- The value of c(n(100)) is [tex]\mathbf{c(n(100)) = 130000}[/tex]
- The interpretation is: "the cost of working for 100 hours is $130000"
The given parameters are:
- $5000 in fixed costs plus an additional $250
- 5 systems in one hour of production
(a) Functions c(n) and n(h)
Let the number of system be n, and h be the number of hours
So, the cost function (c(n)) is:
[tex]\mathbf{c(n) = Fixed + Additional \times n}[/tex]
This gives
[tex]\mathbf{c(n) = 5000 + 250 \times n}[/tex]
[tex]\mathbf{c(n) = 5000 + 250n}[/tex]
The function for number of systems is:
[tex]\mathbf{n(h) = 5 \times h}[/tex]
[tex]\mathbf{n(h) = 5h}[/tex]
(b) Function c(n(h))
In (a), we have:
[tex]\mathbf{c(n) = 5000 + 250n}[/tex]
[tex]\mathbf{n(h) = 5h}[/tex]
Substitute n(h) for n in [tex]\mathbf{c(n) = 5000 + 250n}[/tex]
[tex]\mathbf{c(n(h)) = 5000 + 250n(h)}[/tex]
Substitute [tex]\mathbf{n(h) = 5h}[/tex]
[tex]\mathbf{c(n(h)) = 5000 + 250 \times 5h}[/tex]
[tex]\mathbf{c(n(h)) = 5000 + 1250h}[/tex]
(c) Find c(n(100))
c(n(100)) means that h = 100.
So, we have:
[tex]\mathbf{c(n(100)) = 5000 + 1250 \times 100}[/tex]
[tex]\mathbf{c(n(100)) = 5000 + 125000}[/tex]
[tex]\mathbf{c(n(100)) = 130000}[/tex]
(d) Interpret (c)
In (c), we have: [tex]\mathbf{c(n(100)) = 130000}[/tex]
It means that:
The cost of working for 100 hours is $130000
Read more about composite functions at:
https://brainly.com/question/10830110
