Evaluate the infinite sum:
[tex] \displaystyle \large{1 + \frac{2}{\pi} + \frac{3}{ {\pi}^{2} } + \frac{4}{ {\pi}^{3} } + ... + \frac{n}{ {\pi}^{n - 1} } + ...}[/tex]
With the given condition that:
[tex] \displaystyle \large{ \lim_{n \to \infty} n {x}^{n} = 0 \: \: \: \tt{when} \: \: \mathtt{ |x| < 1}}[/tex]
Please show your work too — thanks in advance!​

Respuesta :

Consider the k-th partial sum,

[tex]S_k = 1 + \dfrac2\pi + \dfrac3{\pi^2} + \cdots + \dfrac k{\pi^{k-1}}[/tex]

More compactly,

[tex]\displaystyle S_k = \sum_{i=1}^k \frac i{\pi^{i-1}} = \frac{(1-\pi)k+\pi^{k+1}-\pi}{(1-\pi)^2\pi^{k-1}}[/tex]

(this is just another case of a similar sum you asked about a while ago [24494877])

The infinite sum is the limit of the partial sum as k goes to infinity. We have

[tex]\displaystyle \lim_{k\to\infty} \frac{(1-\pi)k+\pi^{k+1}-\pi}{(1-\pi)^2\pi^{k-1}} = \frac\pi{(1-\pi)^2} \lim_{k\to\infty} \left(\frac{(1-\pi)k}{\pi^k} + \pi - \frac1{\pi^{k-1}} \right) = \boxed{\frac{\pi^2}{(1-\pi)^2}}[/tex]

since the non-constant terms in the limit converge to 0.

Alternatively, recall that for |x| < 1, we have

[tex]\dfrac1{1-x} = \displaystyle \sum_{n=0}^\infty x^n[/tex]

Differentiating both sides gives

[tex]\dfrac1{(1-x)^2} = \displaystyle \sum_{n=0}^\infty nx^{n-1} = \sum_{n=1}^\infty nx^{n-1}[/tex]

also valid for |x| < 1. Take x = 1/π and you get the sum you want to compute.

ACCESS MORE
EDU ACCESS
Universidad de Mexico