A piecewise-defined function has different rules for different parts, or pieces, of its
domain. In order to evaluate a piecewise defined function for a given value of x
find the interval, or piece, that y belongs to. Find the corresponding definition at
the function for that interval

A piecewisedefined function has different rules for different parts or pieces of its domain In order to evaluate a piecewise defined function for a given value class=

Respuesta :

Applying the piecewise function, we have that:

a) [tex]f(-5) = 3[/tex]

b) [tex]f(-4) = 3[/tex]

c) [tex]f(-3) = 3[/tex]

d) [tex]f(-2) = -4[/tex]

e) [tex]f(-1) = -3[/tex]

f) [tex]f(0) = -2[/tex]

--------------------------

The function is:

[tex]f(x) = 3, -5 \leq x < -2[/tex]

[tex]f(x) = x - 2, -2 \leq x \leq 0[/tex]

For items a, b and c, the input x is values between -5 and -2, thus, the definition is:

[tex]f(x) = 3[/tex]

Then

[tex]f(-5) = 3[/tex]

[tex]f(-4) = 3[/tex]

[tex]f(-3) = 3[/tex]

For items d, e and f, values of x between -2 and 0, thus, the definition is:

[tex]f(x) = x - 2[/tex]

Then

[tex]f(-2) = -2 - 2 = -4[/tex]

[tex]f(-1) = -1 - 2 = -3[/tex]

[tex]f(0) = 0 - 2 = -2[/tex]

A similar problem is given at https://brainly.com/question/24815096

RELAXING NOICE
Relax