This was given to me during a summative test and the teacher didn't bother giving me the correction. I just cannot figure it out

ATQ
[tex]\\ \sf\longmapsto xy=6050\dots 1[/tex]
[tex]\\ \sf\longmapsto 2(x+y)=220\implies x+y=110\dots 2[/tex]
Now
[tex]\\ \sf\longmapsto (x+y)^2=x^2+y^2+2xy[/tex]
[tex]\\ \sf\longmapsto 110^2-2(6050)=x^2+y^2[/tex]
[tex]\\ \sf\longmapsto 12100-12100=x^2+y^2[/tex]
[tex]\\ \sf\longmapsto x^2+y^2=0\dots(3)[/tex]
From all equations
[tex]\\ \sf\longmapsto (x-y)^2=x^2+y^2-2xy[/tex]
[tex]\\ \sf\longmapsto (x-y)^2=0-2(6050)[/tex]
[tex]\\ \sf\longmapsto (x-y)^2=-12100[/tex]
[tex]\\ \sf\longmapsto (x-y)=110\dots(4)[/tex]
Now
Adding 3 and 4
[tex]\\ \sf\longmapsto 2x=220[/tex]
[tex]\\ \sf\longmapsto x=110m[/tex]
One side won't be covered hence