The two equation are [tex]b+w=75[/tex] and [tex]15b+20w=1350[/tex].
She worked [tex]30[/tex] hours as babysitting and [tex]45[/tex] hours dog walking.
And, the solution works in both the equations.
A) Let “[tex]b[/tex]” represent hours babysitting and “[tex]w[/tex]” represent hours walking dogs.
She worked a total of [tex]75[/tex] hours. So, [tex]b+w=75...(i)[/tex]
She was paid $[tex]15[/tex] an hour babysitting and $[tex]20[/tex] an hour dog walking and earned a total of $[tex]1350[/tex],
[tex]15b+20w=1350...(ii)[/tex]
B)
[tex]b+w=75...(i)[/tex]
[tex]b=75-w[/tex]
Put this value in [tex](ii)[/tex]
[tex]15(75-w)+20w=1350[/tex]
[tex]1125-15w+20w=1350[/tex]
[tex]5w=1350-1125[/tex]
[tex]5w=225[/tex]
[tex]w=45[/tex]
Put this value in [tex](i)[/tex]
[tex]b+45=75[/tex]
[tex]b=75-45[/tex]
[tex]b=30[/tex]
So, she worked [tex]30[/tex] hours as babysitting and [tex]45[/tex] hours dog walking.
C)
Substituting the values in [tex](i)[/tex],
[tex]b+w=75[/tex]
[tex]30+45=75[/tex]
[tex]75=75[/tex], which is true
Substituting the values in [tex](ii),[/tex]
[tex]15b+20w=1350[/tex]
[tex]15\times 30+20\times 45=1350[/tex]
[tex]450+900=1350[/tex]
[tex]1350=1350[/tex], which is true
So, the solution works in both the equations.
Learn more about linear equations in two variables here:
https://brainly.com/question/6138677?referrer=searchResults