Respuesta :

[tex] \huge \boxed{\mathbb{QUESTION} \downarrow}[/tex]

  • Answer the 2 questions.

[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]

1st Question :-

a) State what's asked to find [tex]\downarrow[/tex]

  • the length of the rectangular garden.

b) State the given facts [tex]\downarrow[/tex]

  • area of a rectangular pool (garden) = x² + x - 12 cm²
  • width of the garden = x + 4 cm.

c) Write a working equation [tex]\downarrow[/tex]

area of the garden = length of the garden × width of the garden. Let's take the length as 'l'. So the equation is...

  • x² + x - 12 = l × (x + 4)

d) Solve the equation [tex]\downarrow[/tex]

[tex] \tt {x}^{2} + x - 12 = l \times (x + 4) \\ \\ \sf \: Bring \: (x + 4) \: towards \: the \: left \: side \\ \sf\: of \: the \: equation. \\ \\ \tt \frac{ {x}^{2} + x - 12 }{x + 4} = l \\ \\ \sf \: Factor \: the \: expressions \: that \: are \\ \sf \: not \: already \: factored. \\ \\ \tt \frac{\left(x-3\right)\left(x+4\right)}{(x+4)} = l\\ \\ \sf Cancel \: out \: (x + 4) \: in \: both \: the \\ \sf \: numerator \: and \: denominator. \\ \\ \large \boxed{\boxed{ \bf \: (x-3 )= l}}[/tex]

e) State your answer [tex]\downarrow[/tex]

  • The length of the rectangular garden is x - 3 cm.

NOTE :-

I think there's a mistake in the question. It should be the area of the rectangular garden & not area of the rectangular pool because here we are asked to measure the length of the garden.

__________________

2nd Question :-

a) State what's asked to find [tex]\downarrow[/tex]

  • the length of the side of the square.

b) State the given facts [tex]\downarrow[/tex]

  • area of the tile = x² + 10x + 25 cm²

c) Write a working equation.

We know that, area of a square = side of the square × side of the square. Let's take the side of the tile (square) as 's'. So, the equation is...

  • x² + 10x + 25 = s × s

d) Solve the equation [tex]\downarrow[/tex]

[tex] \tt {x}^{2} + 10x + 25 = s \times s \\ \\ \sf \: s \: \times \: s \: is \: equal \: to \: {s}^{2} \\ \\ \tt \: {x}^{2} + 10x + 25 = {s}^{2} \\ \\ \sf \: Using \: split \: the \: middle \: term \: method.. \\ \\ \tt \: {x}^{2} + 10x + 25 = {s}^{2} \\ \tt \: \left(x^{2}+5x\right)+\left(5x+25\right) = {s}^{2} \\ \tt x\left(x+5\right)+5\left(x+5\right) = {s}^{2} \\ \tt \: \left(x+5\right)\left(x+5\right) = {s}^{2} \\ \tt\left(x+5\right)^{2} = {s}^{2} \\ \\ \sf \: Now \: squaring \: on \: both \: the \: sides.. \\ \\ \tt \: \sqrt{(x + 5) ^{2} } = \sqrt{ {s}^{2} } \\ \large \boxed{\boxed{ \bf \: (x + 5) = s}}[/tex]

e) State your answer [tex]\downarrow[/tex]

  • The length of 1 side of the square is x + 5 cm.

__________________

RELAXING NOICE
Relax