Respuesta :

we know that

[tex]G=60\°[/tex]

The value of the tangent is equal to

[tex]tan(G)=\frac{sin(G)}{cos(G)}[/tex]

remember that

[tex]sin(60\°)=\frac{\sqrt{3}}{2}[/tex]

[tex]cos(60\°)=\frac{1}{2}[/tex]

substitute

[tex]tan(60\°)=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}[/tex]

[tex]tan(60\°)=\sqrt{3}[/tex]

therefore

the answer is

square root 3

Answer:

(D)

Step-by-step explanation:

It is given that GYK is a right angled triangle, which is right angled at K and the measure of the angle G is 60° and the measure of the angle Y is 30°.

Now, from the ΔGYK, using the trigonometry, we have

[tex]tanG=\frac{sinG}{cosG}[/tex]

Now,the value of [tex]sinG[/tex] is :

[tex]sinG=sin(60^{\circ})[/tex]

=[tex]\frac{\sqrt{3}}{2}[/tex]

And, the value of [tex]cosG[/tex] is:

[tex]cosG=cos(60^{\circ})[/tex]

=[tex]\frac{1}{2}[/tex]

Now, the value of [tex]tanG[/tex] is:

[tex]tanG=\frac{sinG}{cosG}[/tex]

[tex]tan(60^{\circ})=\frac{sin60^{\circ}}{cos60^{\circ}}[/tex]

[tex]tan60^{\circ}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}[/tex]

[tex]tan60^{\circ}=\sqrt{3}[/tex]

Thus, option D is correct.

ACCESS MORE

Otras preguntas