Respuesta :

Answer:

[tex]12 - 4 \sqrt{5} [/tex]

Step-by-step explanation:

[tex] {( \sqrt{10} - \sqrt{2} })^{2} \\ ( \sqrt{10} - \sqrt{2} )( \sqrt{10} - \sqrt{2} ) \\ 10 - 2 \sqrt{5} - 2 \sqrt{5} + 2 \\ 10 - 4 \sqrt{5} + 2 \\ 12 - 4 \sqrt{5} [/tex]

I hope I helped you^_^

[tex] \huge \boxed{\mathfrak{Question} \downarrow}[/tex]

  • Expand & simplify ⇨ [tex]( \sqrt{10} - \sqrt{2} ) ^{2} [/tex]. Give your answer in the form [tex]b - c \: \sqrt{5} [/tex] where b & c are integers.

[tex] \large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}[/tex]

[tex]( \sqrt { 10 } - \sqrt { 2 } ) ^ { 2 }[/tex]

Use binomial theorem [tex]\left(a-b\right)^{2}=a^{2}-2ab+b^{2} [/tex] to expand [tex]\left(\sqrt{10}-\sqrt{2}\right)^{2}[/tex].

[tex]\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2} [/tex]

The square of [tex]\sqrt{10}[/tex] is 10.

[tex]10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2} [/tex]

Factor [tex]10=2\times 5[/tex]. Rewrite the square root of the product [tex]\sqrt{2\times 5} [/tex] as the product of square roots [tex]\sqrt{2}\sqrt{5}[/tex].

[tex]10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2} [/tex]

Multiply [tex]\sqrt{2}[/tex] and [tex]\sqrt{2} [/tex] to get 2.

[tex]10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2} [/tex]

Multiply -2 and 2 to get -4.

[tex]10-4\sqrt{5}+\left(\sqrt{2}\right)^{2} [/tex]

The square of [tex]\sqrt{2}[/tex] is 2.

[tex]10-4\sqrt{5}+2 [/tex]

Add 10 and 2 to get 12.

[tex] \boxed{ \boxed{\bf\:12-4\sqrt{5} }}[/tex]

  • Here, b & c are integers where [tex]\boxed{ \sf \: b = 12 \: and \: c = 4}[/tex]
ACCESS MORE