Respuesta :
- Initial velocity=0m/s=u
- Acceleration=a=5.5m/s^2
#8.1
- t=12s
[tex]\\ \sf\longmapsto v=u+at[/tex]
[tex]\\ \sf\longmapsto v=0+5.5(12)[/tex]
[tex]\\ \sf\longmapsto v=66m/s[/tex]
#8.2
- u=0m/s
- v=18m/s
- a=5.5m/s^2
Use third equation of kinematics
[tex]\\ \sf\longmapsto v^2-u^2=2as[/tex]
[tex]\\ \sf\longmapsto s=\dfrac{v^2-u^2}{2a}[/tex]
[tex]\\ \sf\longmapsto s=\dfrac{18^2-0^2}{2(5.5)}[/tex]
[tex]\\ \sf\longmapsto s=\dfrac{324}{11}[/tex]
[tex]\\ \sf\longmapsto s=29.4m[/tex]
Answer:
Question 8.1
• from first newtons equation of motion:
[tex]\dashrightarrow \: { \tt{v = u + at}}[/tex]
• u → 0
• a → 5.5 m/s²
• t → 12 s
[tex]\dashrightarrow \: { \tt{v = 0 + (5.5 \times 12)}} \\ \\ { \boxed{ \tt{v = 66 \: {ms}^{ - 1} }}}[/tex]
Question 8.2
• from third newton equation of motion:
[tex]{ \tt{ {v}^{2} = {u}^{2} + 2as }}[/tex]
• s → displacement
• u → 0
• a → 5.5 m/s²
• v → 18 m/s
[tex]\dashrightarrow \: { \tt{ {18}^{2} = {0}^{2} + (2 \times 5.5 \times s) }} \\ \\ { \tt{324 = 11s}} \\ \\ { \boxed{ \tt{displacement = 29.5 \: m}}}[/tex]