If the 5th term of a geometric progression is 162 and the 8th term is 4374, find the (i) 1st three terms of the sequence; (ii) sum of the first 10 terms​

Respuesta :

Answer:

see explanation

Step-by-step explanation:

The nth term of a geometric progression is

[tex]a_{n}[/tex] = a₁[tex]r^{n-1}[/tex]

where a₁  is the first term and r the common ratio

Given a₅ = 162 and a₈ = 4374 , then

a₁[tex]r^{4}[/tex] = 162 → (1)

a₁[tex]r^{7}[/tex] = 4374 → (2)

Divide (2) by (1)

[tex]\frac{a_{1}r^{7} }{a_{1}r^{4} }[/tex] = [tex]\frac{4374}{162}[/tex]

r³ = 27

r = [tex]\sqrt[3]{27}[/tex] = 3

Substitute r = 3 into (1) and solve for a₁

a₁[tex](3)^{4}[/tex] = 162

81a₁ = 162

a₁ = [tex]\frac{162}{81}[/tex] = 2

Then

a₂ = a₁ × 3 = 2 × 3 = 6

a₃ = a₂ × 3 = 6 × 3 = 18

The first 3 terms are 2, 6, 18

(ii)

The sum to n terms of a geometric progression is

[tex]S_{n}[/tex] = [tex]\frac{a_{1}(r^{n}-1) }{r-1}[/tex] , then

[tex]S_{10}[/tex] = [tex]\frac{2(3^{10}-1) }{3-1}[/tex]

     = [tex]\frac{2(59049-1)}{2}[/tex]

     = 59049 - 1

     = 59048

   

ACCESS MORE