Respuesta :

Answer:

D

Step-by-step explanation:

Since RS is parallel to PQ, gradient of RS is equal to gradient of PQ.

[tex]\boxed{gradient = \frac{y1 - y2}{x1 - x2} }[/tex]

Gradient of RS

= gradient of PQ

[tex] = \frac{18 - 10}{ - 9 - ( - 3)} [/tex]

[tex] = \frac{8}{ - 9 + 3} [/tex]

[tex] = \frac{8}{ - 6} [/tex]

[tex] = - \frac{4}{3} [/tex]

y- intercept occurs at x= 0. Let the coordinates of the y-intercept of RS be (0, y).

[tex] \frac{y - 6}{0 - 3} = - \frac{4}{3} [/tex]

[tex] \frac{y - 6}{ - 3} = - \frac{4}{3} [/tex]

Multiply both sides by -3:

y -6= 4

y= 6 +4

y= 10

Thus, the correct option is D.

ACCESS MORE