Respuesta :

Answers:

Option  1.)  -4|6x + 3| < 16

Option  2.) 8|6x + 3|+ 13 >  5  

Option  4.) |4x - 9| ≥ -12  

Step-by-step explanation:

All real numbers (R) contain rational and irrational numbers. Therefore, the correct answers are:

Option  1.)   -4|6x + 3| < 16  

Multiply both sides of the inequality by (-1) to reverse the inequality symbol:

(-1 ) (-4 |6x + 3| )  < 16  (-1 )

4|6x + 3| > - 16    

Divide both sides of the inequality by 4:

[tex]\frac{6|6x+3|}{4} > \frac{-16}{4}[/tex]

|6x + 3|  > - 4   → true for all x values ( – ∞, ∞)

Explanation: If the absolute value is greater than a negative number, the solution is all real numbers.

Option 2.)  8|6x + 3|+ 13 >  5  

Subtract 13 from both sides of the inequality:

8|6x + 3|+ 13 - 13 >  5  - 13

8|6x + 3| > - 8

Divide both sides of the inequality by 8:

[tex]\frac{8|6x+3|}{8} > \frac{-8}{8}[/tex]

|6x + 3| > - 1  →  true for all x values ( – ∞, ∞)

Explanation: If the absolute value is greater than a negative number, the solution is all real numbers.

Option 4.)  |4x - 9| ≥ -12  →  true for all x values ( – ∞, ∞)

Explanation:  If the absolute value is greater than or equal to a negative number, the solution is all real numbers. The absolute value of something will always be greater than a negative number.

Example: if x = - 50, then:

|4(-50) - 9| ≥ -12

|-200 - 9| ≥ -12

|-209| ≥ -12

209 ≥ -12  is a true statement. Therefore, x = - 50 is a solution.

If x = 0, then:

|4(0) - 9| ≥ -12

|0 - 9| ≥ -12

|- 9| ≥ -12

9  ≥ -12 is a true statement. Therefore, x = 0 is also a solution.

This proves that regardless of any x values, as long as the inequality is either greater than/ greater than or equal to a negative number, all real numbers are valid solutions for x because the absolute value of something will always be greater than a negative number.

ACCESS MORE