Learning Task 3. Encircle
notebook.
Rational Algebraic
Expression. Do this in your
1
1. 6x-1
2
2, x2 + x - 3
3.
x2 - 4
- 2
*
5.
1 름
3x
B. Simplify the following rational algebraic expression.
4m2
abc
x +1
1. 2m
2. bc
3. x2-4x-5​

Respuesta :

Algebraic expressions are expressions that use literals (i.e alphabets) to represent its variables.

  • The rational expressions are: [tex]\frac{2}{3x}[/tex] and [tex]\frac{x^2 - 4}{x - 2}[/tex].
  • The simplified expressions are: [tex]2m[/tex], [tex]a[/tex] and [tex]\frac 1{x - 5}[/tex]

(a) Encircle Rational Algebraic Expressions

A rational algebraic expression is a ratio of two polynomials.

So, the rational expressions are:

[tex]\frac{2}{3x}[/tex] and [tex]\frac{x^2 - 4}{x - 2}[/tex] because the numerator and the denominator are polynomials

However,

[tex]6x - 1[/tex], [tex]x^2 + x - 3[/tex] and [tex]\frac{1}{x^{-5}}[/tex]  are not rational

(b) Simplify

[tex]\frac{4m^2}{2m}[/tex]

Expand the numerator

[tex]\frac{4m^2}{2m} = \frac{2m \times 2m}{2m}[/tex]

Cancel out 2m

[tex]\frac{4m^2}{2m} = 2m[/tex]

[tex]\frac{abc}{bc}[/tex]

Expand the numerator

[tex]\frac{abc}{bc} = \frac{a \times bc}{bc}[/tex]

Cancel out bc

[tex]\frac{abc}{bc} = a[/tex]

[tex]\frac{x + 1}{x^2 - 4x - 5}[/tex]

Expand the denominator

[tex]\frac{x + 1}{x^2 - 4x - 5} = \frac{x + 1}{x^2 - 5x + x - 5}[/tex]

Factorize

[tex]\frac{x + 1}{x^2 - 4x - 5} = \frac{x + 1}{x(x - 5) + 1(x - 5)}[/tex]

Factor out x - 5

[tex]\frac{x + 1}{x^2 - 4x - 5} = \frac{x + 1}{(x + 1)(x - 5)}[/tex]

Cancel out the common factor

[tex]\frac{x + 1}{x^2 - 4x - 5} = \frac{1}{x - 5}[/tex]

Read more about algebraic expressions at:

https://brainly.com/question/11227332

ACCESS MORE