A popular video game retailer develops apps. The total profit, in dollars per day, after x days can be modeled by the function R(x) = 3x3 – 21x2 + 21x + 45. The total cost, in dollars per day, after x days, can be modeled by the function A(x) = x2 – 2x – 3. After how many days does the retailer start making money?

Respuesta :

The difference between the cost and revenue functions is the profit function.

The retailer will start making money after 3 days.

Given that:

[tex]R(x) = 3x^3\:-\:21x^2\:+\:21x\:+\:45[/tex]

[tex]A(x) = x^2 - 2x - 3[/tex]

The retailer will start making money when R(x) > 0 i.e. when the profit is greater than 0.

So, we have:

[tex]3x^3 - 21x^2 + 21x + 45 > 0[/tex]

Factor out 3

[tex]3(x^3 - 7x^2 +7x + 15) > 0[/tex]

Divide through by 3

[tex]x^3 - 7x^2 +7x + 15 > 0[/tex]

Expand

[tex]x^3 - 8x^2 + 15x + x^2 - 8x + 15 > 0[/tex]

Further expand

[tex]x^3 - 5x^2 - 3x^2 + 15x + x^2 - 5x - 3x + 15 > 0[/tex]

Factorize

[tex]x^2(x - 5) - 3x(x - 5) + x(x - 5) - 3(x -5) > 0[/tex]

Factor out the common factors

[tex](x^2 - 3x)(x - 5) + (x - 3)(x - 5) > 0[/tex]

Factor out x

[tex]x(x - 3)(x - 5) + (x - 3)(x - 5) > 0[/tex]

Factor out (x - 3)(x - 5)

[tex](x - 3)(x - 5)(x + 1) > 0[/tex]

Split

[tex]x - 3> 0[/tex] or [tex]x - 5> 0[/tex] or [tex]x + 1 > 0[/tex]

Solve for x

[tex]x > 3[/tex] or [tex]x > 5[/tex] or [tex]x > -1[/tex]

x cannot be negative.So:

[tex]x > 3[/tex] or [tex]x > 5[/tex]

Because 3 is less than 5, then the reasonable solution to the set is:

[tex]x > 3[/tex]

Hence, the retailer will start making money after 3 days.

Read more about profit, cost and revenue functions at:

https://brainly.com/question/17164893

ACCESS MORE