#11 i
MODELING REAL LIFE The diagram shows the vertices of a lion sanctuary. Each unit
the coordinate plane represents 100 feet. Find the perimeter and the area of the sanctuary.


A(5, 7)
B(8, 7)
C(8, 1)
D( 1, 1)
E( 1, 4)
F ( 5,4)

Respuesta :

The area of a shape is the amount of space a shape can occupy, while the perimeter is the sum of its lengths.

  • The perimeter is [tex]18 + 3\sqrt 5 + 3\sqrt 2[/tex]units
  • The area of the sanctuary is 27 square units

We have:

[tex]A = (5,7)\\B=(8, 7)\\C=(8, 1)\\D=( 1, 1)\\E=( 1, 4)\\F= ( 5,4)[/tex]

Perimeter

See attachment for the layout of the sanctuary

[tex]BC = \sqrt{(8 - 8)^2 + (7 - 1)^2} = 6[/tex]

[tex]EF = \sqrt{(1 - 5)^2 + (4 - 4)^2} = 4[/tex]

[tex]FA = \sqrt{(5 - 5)^2 + (4 - 7)^2} = 3[/tex]

From the attachment, the sides are

AB, BF, FC, CD, DE and EA

Start by calculating the length of each side using the following distance formula:

[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}[/tex]

So, we have:

[tex]AB = \sqrt{(5 - 8)^2 + (7 - 7)^2} = 3[/tex]

[tex]BF = \sqrt{(8 - 5)^2 + (7 -1)^2} = \sqrt{45} = 3\sqrt 5[/tex]

[tex]FC = \sqrt{(8 - 5)^2 + (1 -4)^2} = \sqrt{18} = 3\sqrt 2[/tex]

[tex]CD = \sqrt{(8 - 1)^2 + (1 - 1)^2} = 7[/tex]

[tex]DE = \sqrt{(1 - 1)^2 + (1 - 4)^2} = 3[/tex]

[tex]EA = \sqrt{(1 - 5)^2 + (4 -7)^2} = 5[/tex]

So, the perimeter (P) is:

[tex]P = AB + BF + FC + CD + DE + EA[/tex]

[tex]P = 3 + 3\sqrt 5 + 3\sqrt 2 + 7 + 3 + 5[/tex]

[tex]P = 18 + 3\sqrt 5 + 3\sqrt 2[/tex]

Hence, the perimeter is [tex]18 + 3\sqrt 5 + 3\sqrt 2[/tex]units

Area

To calculate the area, we need to divide the sanctuary into three.

  1. Triangle ABF
  2. Triangle EFA
  3. Trapezium CDEF

The area of ABF is:

[tex]Area = \frac 12 \times AB \times FA[/tex]

Where:

[tex]AB = 3[/tex]

[tex]FA = \sqrt{(5 - 5)^2 + (4 - 7)^2} = 3[/tex]

[tex]Area = \frac 12 \times 3 \times 3[/tex]

[tex]Area = \frac 92[/tex]

The area of EFA is:

[tex]Area = \frac 12 \times EF \times FA[/tex]

Where:

[tex]FA = 3[/tex]

[tex]EF = \sqrt{(1 - 5)^2 + (4 - 4)^2} = 4[/tex]

So:

[tex]Area = \frac 12 \times 4 \times 3[/tex]

[tex]Area = 6[/tex]

The area of CDEF is:

[tex]Area = \frac 12(CD + EF) \times DE[/tex]

Where

[tex]CD = 7[/tex]

[tex]EF = 4[/tex]

[tex]DE = 3[/tex]

So, we have:

[tex]Area = \frac 12 (7 + 4) \times 3[/tex]

[tex]Area = \frac 12 \times 11 \times 3[/tex]

[tex]Area = \frac {33}2[/tex]

So, the area of the sanctuary is:

[tex]Area = \frac 92 + 6 + \frac {33}2[/tex]

[tex]Area = \frac {9 +12 + 33}2[/tex]

[tex]Area = \frac {54}2[/tex]

[tex]Area = 27[/tex]

Hence, the area of the sanctuary is 27 square units

Read more about areas and perimeters at:

https://brainly.com/question/11957651

Ver imagen MrRoyal
ACCESS MORE