Respuesta :
The area of a shape is the amount of space a shape can occupy, while the perimeter is the sum of its lengths.
- The perimeter is [tex]18 + 3\sqrt 5 + 3\sqrt 2[/tex]units
- The area of the sanctuary is 27 square units
We have:
[tex]A = (5,7)\\B=(8, 7)\\C=(8, 1)\\D=( 1, 1)\\E=( 1, 4)\\F= ( 5,4)[/tex]
Perimeter
See attachment for the layout of the sanctuary
[tex]BC = \sqrt{(8 - 8)^2 + (7 - 1)^2} = 6[/tex]
[tex]EF = \sqrt{(1 - 5)^2 + (4 - 4)^2} = 4[/tex]
[tex]FA = \sqrt{(5 - 5)^2 + (4 - 7)^2} = 3[/tex]
From the attachment, the sides are
AB, BF, FC, CD, DE and EA
Start by calculating the length of each side using the following distance formula:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}[/tex]
So, we have:
[tex]AB = \sqrt{(5 - 8)^2 + (7 - 7)^2} = 3[/tex]
[tex]BF = \sqrt{(8 - 5)^2 + (7 -1)^2} = \sqrt{45} = 3\sqrt 5[/tex]
[tex]FC = \sqrt{(8 - 5)^2 + (1 -4)^2} = \sqrt{18} = 3\sqrt 2[/tex]
[tex]CD = \sqrt{(8 - 1)^2 + (1 - 1)^2} = 7[/tex]
[tex]DE = \sqrt{(1 - 1)^2 + (1 - 4)^2} = 3[/tex]
[tex]EA = \sqrt{(1 - 5)^2 + (4 -7)^2} = 5[/tex]
So, the perimeter (P) is:
[tex]P = AB + BF + FC + CD + DE + EA[/tex]
[tex]P = 3 + 3\sqrt 5 + 3\sqrt 2 + 7 + 3 + 5[/tex]
[tex]P = 18 + 3\sqrt 5 + 3\sqrt 2[/tex]
Hence, the perimeter is [tex]18 + 3\sqrt 5 + 3\sqrt 2[/tex]units
Area
To calculate the area, we need to divide the sanctuary into three.
- Triangle ABF
- Triangle EFA
- Trapezium CDEF
The area of ABF is:
[tex]Area = \frac 12 \times AB \times FA[/tex]
Where:
[tex]AB = 3[/tex]
[tex]FA = \sqrt{(5 - 5)^2 + (4 - 7)^2} = 3[/tex]
[tex]Area = \frac 12 \times 3 \times 3[/tex]
[tex]Area = \frac 92[/tex]
The area of EFA is:
[tex]Area = \frac 12 \times EF \times FA[/tex]
Where:
[tex]FA = 3[/tex]
[tex]EF = \sqrt{(1 - 5)^2 + (4 - 4)^2} = 4[/tex]
So:
[tex]Area = \frac 12 \times 4 \times 3[/tex]
[tex]Area = 6[/tex]
The area of CDEF is:
[tex]Area = \frac 12(CD + EF) \times DE[/tex]
Where
[tex]CD = 7[/tex]
[tex]EF = 4[/tex]
[tex]DE = 3[/tex]
So, we have:
[tex]Area = \frac 12 (7 + 4) \times 3[/tex]
[tex]Area = \frac 12 \times 11 \times 3[/tex]
[tex]Area = \frac {33}2[/tex]
So, the area of the sanctuary is:
[tex]Area = \frac 92 + 6 + \frac {33}2[/tex]
[tex]Area = \frac {9 +12 + 33}2[/tex]
[tex]Area = \frac {54}2[/tex]
[tex]Area = 27[/tex]
Hence, the area of the sanctuary is 27 square units
Read more about areas and perimeters at:
https://brainly.com/question/11957651
![Ver imagen MrRoyal](https://us-static.z-dn.net/files/dfd/8e4fd791fa80fdc7dd3561ea8a23206f.png)