We have that wavelengths to transitions in the hydrogen atom.
[tex]nf=2,ni=1 \rightarrow 121.5nm\\\\ni=1,nf=3 \rightarrow 102.6nm\\\\\ni=1,nf=4 \rightarrow 97.2nm[/tex]
From the question we are told that
121.5 nm,102.6 nm, and 97.23 nm
Generally the equation for wavelength is mathematically given as
[tex]\frac{1}{\lambda}=R_H*(\frac{1}{nf^2}-\frac{1}{nf^2})\\\\\frac{1}{\lambda}=1.097*10^7*\frac{1}{nf^2}-\frac{1}{ni^2}[/tex]
Therefore
For nf=2,ni=1
[tex]\frac{1}{\lambda}=1.097*10^7*\frac{1}{2^2}-\frac{1}{1^2}\\\\\frac{1}{\lambda}=121.5nm[/tex]
For ni=1,nf=3
[tex]\frac{1}{\lambda}=1.097*10^7*\frac{3}{1^2}-\frac{1}{1^2}\\\\\frac{1}{\lambda}=102.6nm[/tex]
For ni=1,nf=4
[tex]\frac{1}{\lambda}=1.097*10^7*\frac{1}{4^2}-\frac{1}{1^2}\\\\\frac{1}{\lambda}=97.2nm[/tex]
Therefore
The Correct slots are
[tex]nf=2,ni=1 \rightarrow 121.5nm\\\\ ni=1 ,nf = 3 \rightarrow 102.6nm\\\\\ni=1,nf=4 \rightarrow 97.2 nm[/tex]
For more information on this visit
https://brainly.com/question/13025901?referrer=searchResults