A function of the form [tex]f(x) = x^{-n}[/tex], wherein n is a natural number, is regarded as a negative power function. Inside the form, we might also put [tex]f(x)[/tex],that is[tex]f(x) = \frac{1}{x^n}[/tex],and the further calculation can be defied as follows:
Given:
[tex]\bold{a)\ \sin 120^{\circ}}\\\\\bold{b)\ \sin 150^{\circ}}\\\\\bold{c)\ \cos 235^{\circ}}\\\\\bold{d)\ \cos 300^{\circ}}\\\\[/tex]
To find:
Find negative function values =?
Solution:
[tex]\therefore \\\\\to \bold{\sin (180- \theta)= \sin \theta} \\\\\to \bold{\cos (180- \theta)= -\cos \theta} \\\\\to \bold{\cos (180+ \theta)= -\cos \theta} \\\\ \to \bold{\cos (360- \theta)= \cos \theta}[/tex]
Solve value for a:
[tex]\to \bold{\sin 120^{\circ}= \sin(180-60)}[/tex]
[tex]\bold{=\sin 60^{\circ}}\\\\\bold{=\frac{\sqrt{3}}{2}}\\\\[/tex]
Solve value for b:
[tex]\to \bold{\sin 150^{\circ}= \sin(180-30)}[/tex]
[tex]\bold{=\sin 30^{\circ}}\\\\\bold{=\frac{1}{2}}\\\\[/tex]
Solve value for c:
[tex]\to \bold{\cos 235^{\circ}=-\cos( 180+55)}[/tex]
[tex]\bold{=- \cos 55^{\circ}}\\\\\bold{= -0.57357643635}}\\\\[/tex]
Solve value for d:
[tex]\to \bold{\cos 300^{\circ}= \cos(360-60)}[/tex]
[tex]\bold{= \cos 60^{\circ}}\\\\\bold{= \frac{1}{2}}\\\\[/tex]
Therefore, the final answer is "Option C".
Learn more:
brainly.com/question/24581443