Respuesta :
have you edit the question before posting it? pls retype this and i’ll be back to help you out.
The value of the composite function g(x)- h(x) is [tex]-29x^3-\frac74x^\frac12-6x^\frac14 +12x^{-\frac14}-12x^{-\frac12}+ 14x^{-4}[/tex]
How to complete the functions?
The functions are given as:
[tex]f(x)=3x^\frac12+7x^{-\frac14}+8x^{-4[/tex]
[tex]g(x)=-\frac74x^\frac12+12x^{-\frac14}-21x^3[/tex]
[tex]h(x)=8x^3+12x^{-\frac12}+6x^\frac14-14x^{-4}[/tex]
The value of the function g(x) - h(x) is calculated by subtracting h(x) from g(x).
So, we have:
[tex]g(x) - h(x) = -\frac74x^\frac12+12x^{-\frac14}-21x^3 - (8x^3+12x^{-\frac12}+6x^\frac14-14x^{-4})[/tex]
Open the brackets
[tex]g(x) - h(x) = -\frac74x^\frac12+12x^{-\frac14}-21x^3 - 8x^3-12x^{-\frac12}-6x^\frac14 + 14x^{-4}[/tex]
Collect like terms
[tex]g(x) - h(x) = -21x^3 - 8x^3-\frac74x^\frac12-6x^\frac14 +12x^{-\frac14}-12x^{-\frac12}+ 14x^{-4}[/tex]
Evaluate the like terms
[tex]g(x) - h(x) = -29x^3-\frac74x^\frac12-6x^\frac14 +12x^{-\frac14}-12x^{-\frac12}+ 14x^{-4}[/tex]
Hence, the value of g(x)- h(x) is [tex]-29x^3-\frac74x^\frac12-6x^\frac14 +12x^{-\frac14}-12x^{-\frac12}+ 14x^{-4}[/tex]
Read more about composite functions at:
https://brainly.com/question/10687170