[tex](f +g)(10) = 108[/tex]
Before we can solve for [tex](f +g)(10)[/tex], we need to know how [tex](f +g)(x)[/tex] is defined.
[tex](f +g)(x) = f(x) +g(x) \\ (f +g)(x) = (x^2 -1) +(x -1) \\ (f +g)(x) = x^2 -1 +x -1 \\ (f +g)(x) = x^2 +x -2[/tex]
We can now solve for [tex](f +g)(10)[/tex]:
[tex](f +g)(10) = (10)^2 +(10) -2 \\ (f +g)(10) = 100 +10 -2 \\ (f +g)(10) = 108[/tex]