Respuesta :
a) The coordinates of the combination of vectors are [tex]\vec u + \vec v = (1.7, 8.8)[/tex]
b) The coordinates of the combination of vectors are [tex]3\vec u -2\vec v - 5\vec w = (-25.2, 37.8)[/tex]
c) The coordinates of the combination of vectors are [tex]\vec u + \vec v + \vec w = (5.9, 2.8)[/tex]
The sum of vectors consists in sum the values corresponding to each component, that is:
[tex]\vec u = (u_{x}, u_{y})[/tex], [tex]\vec v = (v_{x}, v_{y})[/tex]
[tex]\vec r = (u_{x} + v_{x}, u_{y}+v_{y})[/tex] (1)
And the multiplication of a vector by scalar is described below:
[tex]\vec v = (v_{x}, v_{y})[/tex], [tex]\alpha \in \mathbb{R}[/tex]
[tex]\vec r = \alpha\cdot \vec v[/tex]
[tex]\vec r = \alpha \cdot (r_{x}, r_{y})[/tex]
[tex]\vec r = (\alpha\cdot v_{x}, \alpha\cdot v_{y})[/tex] (2)
If we know that [tex]\vec u = (-1, 5)[/tex], [tex]\vec v = (2.7, 3.8)[/tex] and [tex]\vec w = (4.2,-6)[/tex], then the coordinates of vectors are:
a) [tex]\vec u + \vec v[/tex]
[tex]\vec r = (-1, 5) +(2.7, 3.8)[/tex]
[tex]\vec r = (1.7, 8.8)[/tex]
b) [tex]3\vec u -2\vec v - 5\vec w[/tex]
[tex]\vec r = 3\cdot(-1,5) -2\cdot (2.7, 3.8) -5\cdot (4.2, -6)[/tex]
[tex]\vec r = (-3, 15) - (5.4, 7.2) - (16.8, -30)[/tex]
[tex]\vec r = (-25.2, 37.8)[/tex]
c) [tex]\vec u + \vec v + \vec w[/tex]
[tex]\vec r = (-1,5) + (2.7, 3.8) +(4.2, -6)[/tex]
[tex]\vec r = (5.9, 2.8)[/tex]
We kindly invite you to see this question on vectors: https://brainly.com/question/10837606