Respuesta :

Answer:

[tex]-4\frac{4}{9} < \sqrt{16} < 4.3 < \frac{61}{14}[/tex]

Step-by-step explanation:

First off, we can simplify [tex]\frac{61}{14}[/tex] to around [tex]4.3571[/tex] and simplify [tex]\sqrt{16}[/tex] to [tex]4[/tex].

We know that [tex]-4 \frac{4}{9}[/tex] is the smallest number, since it's the only negative, so it has to be on the far left.

Out of the remaining three, we then know that [tex]4[/tex], or [tex]\sqrt{16}[/tex] is the next smallest.

Finally, [tex]4.3[/tex] (repeating) is smaller than [tex]4.3571[/tex], or [tex]\frac{61}{14}[/tex].

This gives us the order of numbers:

[tex]-4\frac{4}{9} < \sqrt{16} < 4.3 < \frac{61}{14}[/tex]

Answer:

Step-by-step explanation:

sure, first of all let's just turn all of this into regular numbers ( or decimals)

61 / 14  =  4.357

  _

4.3 = 4.3333 (infinity)

-4 4/9  let's multiply -4 by 9 and then and to the numerator(4)

-4*9 =-36

-36 + 4 = -32

V 16 = 4

1. -32 < 4 < 4.3333  <  4.357

or

                                        _

2.  -4 4/9  <   V 16 <    4.3    <      61/14

any questions? please feel free to ask :D