Average rate of change of f ( x ) on the interval [ 4 , 4 + h ] is [tex]\frac{-1}{64+8h}[/tex]
Given :
[tex]f(x)=\frac{1}{x+4}[/tex]
Find the average rate of change of f(x) over the interval [4,4+h]
Average rate of change formula is
[tex]Average =\frac{f(b)-f(a)}{b-a}[/tex]
Where interval is [a,b]
From the given information , a=4, b=4+h
[tex]f(x)=\frac{1}{x+4}\\a=4, \\f(a)=f(4)=\frac{1}{4+4}=\frac{1}{8} \\b=4+h\\f(b)=f(4+h)=\frac{1}{4+h+4}=\frac{1}{8+h}[/tex]
Replace the values inside the formula
[tex]Average =\frac{f(b)-f(a)}{b-a}\\Average =\frac{f(4+h)-f(4)}{4+h-4}\\Average =\frac{\frac{1}{8+h} -\frac{1}{8} }{h} \\[/tex]
Simplify the numerator part
[tex]Average =\frac{\frac{1}{8+h} -\frac{1}{8} }{h} =\frac{\frac{8-8-h}{8(8+h)} }{h}=\frac{\frac{-h}{64+8h} }{h} =\frac{-1}{64+8h}[/tex]
Average rate of change is [tex]\frac{-1}{64+8h}[/tex]
Learn more : brainly.com/question/19961434