Respuesta :
The domain of a function are the possible input values, the function can take.
The domain of [tex]f(x) = \sqrt{2x^2 + 5x - 12}[/tex] is: [tex](-\infty, -4]\ u\ [1.5,\infty)[/tex]
We have:
[tex]f(x) = \sqrt{2x^2 + 5x - 12}[/tex]
Since f(x) is radical, we simply equate the radicand to 0
So, we have:
[tex]2x^2 + 5x - 12 = 0[/tex]
Expand
[tex]2x^2 + 8x - 3x - 12 = 0[/tex]
Factorize
[tex]2x(x + 4) -3(x + 4) = 0[/tex]
Factor out x + 4
[tex](2x - 3)(x + 4) = 0[/tex]
Solve for x
[tex]2x - 3 = 0[/tex] or [tex]x + 4 = 0[/tex]
[tex]2x = 3[/tex] or [tex]x = -4[/tex]
[tex]x = \frac 32[/tex] or [tex]x = -4[/tex]
[tex]x = 1.5[/tex] or [tex]x = -4[/tex]
-4 is less than 1.5
So, the domain is:
[tex]x \le -4[/tex] or [tex]x \ge 1.5[/tex]
Represent as an interval notation
[tex](-\infty, -4]\ u\ [1.5,\infty)[/tex]
Read more about domain at:
https://brainly.com/question/15339465