What is the domain of the radical function f of x is equal to the square root of the quantity 2 times x squared plus 5 times x minus 12 end quantity

D: [–4, 1.5]

D: [ –4, ∞)

D: (–∞, –4] ∪ [1.5, ∞)

D: (–∞, ∞)

the answer is D: (–∞, –4] ∪ [1.5, ∞)

Respuesta :

The domain of a function are the possible input values, the function can take.

The domain of [tex]f(x) = \sqrt{2x^2 + 5x - 12}[/tex] is: [tex](-\infty, -4]\ u\ [1.5,\infty)[/tex]

We have:

[tex]f(x) = \sqrt{2x^2 + 5x - 12}[/tex]

Since f(x) is radical, we simply equate the radicand to 0

So, we have:

[tex]2x^2 + 5x - 12 = 0[/tex]

Expand

[tex]2x^2 + 8x - 3x - 12 = 0[/tex]

Factorize

[tex]2x(x + 4) -3(x + 4) = 0[/tex]

Factor out x + 4

[tex](2x - 3)(x + 4) = 0[/tex]

Solve for x

[tex]2x - 3 = 0[/tex] or [tex]x + 4 = 0[/tex]

[tex]2x = 3[/tex] or [tex]x = -4[/tex]

[tex]x = \frac 32[/tex] or [tex]x = -4[/tex]

[tex]x = 1.5[/tex] or [tex]x = -4[/tex]

-4 is less than 1.5

So, the domain is:

[tex]x \le -4[/tex] or [tex]x \ge 1.5[/tex]

Represent as an interval notation

[tex](-\infty, -4]\ u\ [1.5,\infty)[/tex]

Read more about domain at:

https://brainly.com/question/15339465

Answer:

its c

Step-by-step explanation:

ACCESS MORE