Respuesta :

Nayefx

Answer:

[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2+1}{n+1}} = \boxed1[/tex]

Step-by-step explanation:

we want to compute the following limit:

[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2+1}{n+1}}[/tex]

well, remember that, for limits to infinity, terms less than the highest degree of the numerator or denominator can be disregarded, hence we can drop 1 which yields:

[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2}{n}}[/tex]

reduce fraction:

[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{n}[/tex]

by using limit formula, we acquire:

[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{n} = \boxed1[/tex]

and we're done!

ACCESS MORE