Answer:
[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2+1}{n+1}} = \boxed1[/tex]
Step-by-step explanation:
we want to compute the following limit:
[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2+1}{n+1}}[/tex]
well, remember that, for limits to infinity, terms less than the highest degree of the numerator or denominator can be disregarded, hence we can drop 1 which yields:
[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{\frac{n^2}{n}}[/tex]
reduce fraction:
[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{n}[/tex]
by using limit formula, we acquire:
[tex] \displaystyle \lim _{n\to \infty }\sqrt[n]{n} = \boxed1[/tex]
and we're done!