Respuesta :
Functions can be represented on a table or as an equation. The true statement is that:
n(x) has a greater sum of roots
Given
[tex]g(x) = x^2 - x + 6[/tex]
[tex]\left[\begin{array}{cccccccccc}x&-3&-2&-1&0&1&2&3&4&5&n(x)&-7&0&5&8&9&8&5&0&-7\end{array}\right][/tex]
Start by testing the options:
(a) The average rate of change over the interval [tex]-1 \le x \le 1[/tex]
Average rate is calculated as follows:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
For g(x),
[tex]m = \frac{g(-1) - g(1)}{-1 - 1}[/tex]
[tex]m = \frac{g(-1) - g(1)}{-2}[/tex]
Calculate g(-1) and g(1)
[tex]g(x) = x^2 - x + 6[/tex]
[tex]g(-1) =(-1)^2 -(-1) + 6 = 8[/tex]
[tex]g(1) =1^2 -1 + 6 = 6[/tex]
So, we have:
[tex]m = \frac{8 - 6}{-2}[/tex]
[tex]m = \frac{2}{-2}[/tex]
[tex]m = -2[/tex]
For n(x),
[tex]m = \frac{n(-1) - n(1)}{-2}[/tex]
[tex]m = \frac{5 - 9}{-2}[/tex]
[tex]m = \frac{- 4}{-2}[/tex]
[tex]m = 2[/tex]
Hence, n(x) has a greater rate of change over [tex]-1 \le x \le 1[/tex]
Option (a) is false
(b) y-intercepts
This is where [tex]x = 0[/tex]
For g(x),
[tex]g(x) = x^2 - x + 6[/tex]
[tex]g(0) = 0^2 - 0 + 6 = 6[/tex]
For n(x),
[tex]n(0) = 8[/tex]
n(x) has a greater y-intercept.
Option (b) is false
(c) Greater maximum
For g(x),
[tex]g(x) = x^2 - x + 6[/tex]
Differentiate
[tex]g'(x) = 2x - 1[/tex]
Equate to 0
[tex]2x -1= 0[/tex]
Solve for x
[tex]2x =1[/tex]
[tex]x = \frac 12[/tex]
[tex]x = 0.5[/tex]
So, the maximum of g(x) is:
[tex]g(x) = x^2 - x + 6[/tex]
[tex]g(0.5) = 0.5^2 - 0.5 + 6[/tex]
[tex]g(0.5) = 5.75[/tex]
The maximum of n(x) is at:
[tex]n(1) = 9[/tex]
n(x) has a greater maximum.
Option (c) is false
(d) Greater sum of roots
Since other options are false,
Option (d) will be true
Hence, n(x) has a greater sum of roots
Read more about tables and equations at:
https://brainly.com/question/13140019