Using trigonometric relations, it is found that option A is correct, that is:
[tex]\sin{x} = \frac{2}{\sqrt{13}}[/tex]
---------------------
Tangent of an angle is sine of this angle divided by the cosine of this angle, thus:
[tex]\tan{x} = \frac{\sin{x}}{\cos{x}}[/tex]
Another important relation is:
[tex]\sin^2{x} + \cos^2{x} = 1[/tex]
Tangent is 2/3, that is:
[tex]\tan{x} = \frac{2}{3}[/tex]
Which means that:
[tex]\frac{\sin{x}}{\cos{x}} = \frac{2}{3}[/tex]
We want to find the sine, so we write the cosine as a function of the sine, that is:
[tex]2\cos{x} = 3\sin{x}[/tex]
[tex]\cos{x} = \frac{3\sin{x}}{2}[/tex]
Replacing in the equation for the relation:
[tex]\sin^2{x} + \cos^2{x} = 1[/tex]
[tex]\sin^2{x} + (\frac{3\sin{x}}{2})^2 = 1[/tex]
[tex]\sin^2{x} + \frac{9\sin^2{x}}{4} = 1[/tex]
[tex]\frac{13\sin^{2}{x}}{4} = 1[/tex]
[tex]\sin^2{x} = \frac{4}{13}[/tex]
[tex]\sin{x} = \pm \sqrt{\frac{4}{13}}[/tex]
First quadrant, thus positive:
[tex]\sin{x} = \frac{2}{\sqrt{13}}[/tex]
A similar problem is given at https://brainly.com/question/24028133