Respuesta :

Answer:

x4+8x3+15x2 this is the answer

Polynomials with common terms can be factorized using the distributive property.

The result of [tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex] is: [tex]-(x+3)(x+5)(x+1)(x-1)[/tex]

Given

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex]

Rewrite as:

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = x(x+1)\times (x+3)(x+5)-x \times (x+3)(x+5)[/tex]

Factor out the common terms, (x + 3) and (x + 5)

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = (x+3)(x+5)[x(x+1)-x][/tex]

Factor out x

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = (x+3)(x+5)[(x+1)(1-x)][/tex]

Rewrite as:

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = -(x+3)(x+5)[(x+1)(x-1)][/tex]

Remove the square brackets

[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = -(x+3)(x+5)(x+1)(x-1)[/tex]

Hence, the result of [tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex] is:

[tex]-(x+3)(x+5)(x+1)(x-1)[/tex]

Read more about factorization at:

https://brainly.com/question/19386208