Respuesta :
Polynomials with common terms can be factorized using the distributive property.
The result of [tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex] is: [tex]-(x+3)(x+5)(x+1)(x-1)[/tex]
Given
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex]
Rewrite as:
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = x(x+1)\times (x+3)(x+5)-x \times (x+3)(x+5)[/tex]
Factor out the common terms, (x + 3) and (x + 5)
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = (x+3)(x+5)[x(x+1)-x][/tex]
Factor out x
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = (x+3)(x+5)[(x+1)(1-x)][/tex]
Rewrite as:
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = -(x+3)(x+5)[(x+1)(x-1)][/tex]
Remove the square brackets
[tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5) = -(x+3)(x+5)(x+1)(x-1)[/tex]
Hence, the result of [tex]x(x+1)(x+3)(x+5)-x(x+3)(x+5)[/tex] is:
[tex]-(x+3)(x+5)(x+1)(x-1)[/tex]
Read more about factorization at:
https://brainly.com/question/19386208