Find the value of x in each case.
![Find the value of x in each case class=](https://us-static.z-dn.net/files/d0d/9d7050d989919df5c258327376b08320.png)
![Find the value of x in each case class=](https://us-static.z-dn.net/files/dc7/a5bce7fae627a770ab18c83f48b23317.png)
Answer:
• First pic
[tex]{ \tt{4x + 65 \degree + x = 180 \degree}} \\ \dashrightarrow \: { \sf{ \{angles \: on \: straight \: line \}}} \\ \\ { \tt{5x + 65 \degree = 180 \degree}} \\ \\ { \tt{5x = 180 \degree - 65 \degree}} \\ \\ { \tt{x = (\frac{115}{5} ) \degree}} \\ \\ \dashrightarrow \: { \boxed{ \tt{ \: \: x = 23 \degree \: \: }}}[/tex]
• Second pic:
[tex]{ \tt{(180 \degree - 124 \degree) + 2x = 6x}} \\ \dashrightarrow \: { \sf{ \{interior \: angle \: sum equivexterior \: angle \} }} \\ \\ { \tt{56 \degree = 6x - 2x}} \\ \\ { \tt{4x = 56 \degree}} \\ \\ { \tt{x = ( \frac{56}{4} ) \degree}} \\ \\ \dashrightarrow \: { \boxed{ \tt{x = 14 \degree}}}[/tex]