contestada

An object thrown in the air has a velocity after seconds that can be described by v(t) = - 9.8z + 24(m) meters/second) and a height h(t) = - 4.9t ^ 2 + 2t + 60 in meters). The object has n = 2 kilograms. The kinetic energy of the shirst is given by K= 1 2 mr^ 2 , and the potential energy is given by 19.5mh. Find an expression for the total kinetic and potential energy K+ U as a functim of time. What does this expression tell you about the energy of the falling object?

Respuesta :

The total energy is an illustration of a composite function.

  • The function of total energy is [tex](K + P)(t) = 2.94t^2 -432.4t + 1716[/tex].
  • The expression tells the total energy of the falling object.

Given

[tex]v(t) = -9.8t + 24[/tex]

[tex]h(t) = -4.9t^2 + 2t + 60[/tex]

[tex]m =2[/tex] -- the mass of the object

First, we calculate the function of kinetic energy

[tex]K = \frac 12mv^2[/tex]

So, we have:

[tex]K(t) = \frac 12m \times (-9.8t + 24)^2[/tex]

Substitute [tex]m =2[/tex]

[tex]K(t) = \frac 12 \times 2 \times (-9.8t + 24)^2[/tex]

[tex]K(t) = (-9.8t + 24)^2[/tex]

[tex]K(t) = 96.04t^2 - 470.4t + 576[/tex]

The function of potential energy is then calculated as:

[tex]P = 9.5mh[/tex], not 19.5mh

So, we have:

[tex]P(t) = 9.5m \times (-4.9t^2 + 2t + 60)[/tex]

Substitute [tex]m =2[/tex]

[tex]P(t) = 9.5 \times 2 \times (-4.9t^2 + 2t + 60)[/tex]

[tex]P(t) = 19 \times (-4.9t^2 + 2t + 60)[/tex]

[tex]P(t) = -93.1t^2 + 38t + 1140[/tex]

So, the composite function for the total energy is:

[tex](K + P)(t) = K(t) + P(t)[/tex]

[tex](K + P)(t) = 96.04t^2 - 470.4t + 576 -93.1t^2 + 38t + 1140[/tex]

Collect like terms

[tex](K + P)(t) = 96.04t^2 -93.1t^2 - 470.4t+ 38t + 576 + 1140[/tex]

[tex](K + P)(t) = 2.94t^2 -432.4t + 1716[/tex]

The expression tells the total energy of the falling object.

Read more about composite functions at:

https://brainly.com/question/8308119

ACCESS MORE