Respuesta :
The two nominal variables are related.
The following table summarises the data from a survey on the ownership of iPods among families with different levels of income.
Ownership C1 C2 C3
No 40 32 48
Yes 30 48 52
The first thing to do in order to determine if they are related or not is to state our null and alternative hypothesis
Null hypothesis
[tex]\mathbf{H_o: Two \nomial \ variables \ are \ related}[/tex]
Alternative hypothesis
[tex]\mathbf{H_a: Two \nomial \ variables \ are \ not \ related}[/tex]
Using the Chi-square test statistics which can be expressed by using the formula
[tex]X ^2 = \sum \dfrac{(O-E)^2}{E}[/tex]
Ownership C1 C2 C3 Total
No 40 32 48 120
Yes 30 48 52 130
Total 70 80 100 250
The expected values are calculated as:
[tex]\mathsf{E_{a,b} = \dfrac{(row \ total \times column \ total )}{grand \ total }}[/tex]
[tex]\mathsf{E_{1,1} = \dfrac{(70 \times120 )}{250 }}[/tex]
[tex]\mathsf{E_{1,1} = 33.6}[/tex]
[tex]\mathsf{E_{1,2} = \dfrac{(70 \times130 )}{250 }}[/tex]
[tex]\mathsf{E_{1,2} = 36.4}[/tex]
[tex]\mathsf{E_{2,1} = \dfrac{(80 \times120 )}{250 }}[/tex]
[tex]\mathsf{E_{2,1} = 38.4}[/tex]
[tex]\mathsf{E_{2,2} = \dfrac{(80 \times 130 )}{250 }}[/tex]
[tex]\mathsf{E_{2,2} = 41.6}[/tex]
[tex]\mathsf{E_{3,1} = \dfrac{(100 \times120 )}{250 }}[/tex]
[tex]\mathsf{E_{3,1} = 48}[/tex]
[tex]\mathsf{E_{3,2} = \dfrac{(70 \times130 )}{250 }}[/tex]
[tex]\mathsf{E_{3,2} = 52}[/tex]
∴ Using the Chi-square test statistics, we have:
[tex]X ^2 = \sum \dfrac{(O-E)^2}{E}[/tex]
[tex]X ^2 = \Bigg( \dfrac{(40-33.6)^2}{33.6}+ \dfrac{(30-36.4)^2}{36.4}+ \dfrac{(32-38.4)^2}{38.4}+ \dfrac{(48-41.6)^2}{41.6} + \dfrac{(48-48)^2}{48}+ \dfrac{(52-52)^2}{52} \Bigg)[/tex]
[tex]X ^2 = \Bigg( \dfrac{40.96}{33.6}+ \dfrac{40.96}{36.4}+ \dfrac{40.96}{38.4}+ \dfrac{40.96}{41.6} + \dfrac{0}{48}+ \dfrac{0}{52} \Bigg)[/tex]
[tex]X ^2 = \Bigg( 1.2190+ 1.1253+ 1.0667+ 0.9846+0+ 0 \Bigg)[/tex]
[tex]\mathbf{X ^2 =4.3956}[/tex]
The degree of freedom df = ((r - 1) × (c - 1))
= (3 - 1) (2 -1 )
= 2 × 1
= 2
∴
Assuming the level of significance = 5%
The p-value of the Chi-square test statistics at df of 2 is:
= [tex]\mathbf{P(X^2 > 4.3956) \implies 0.111}[/tex]
Therefore, we can conclude that since the p-value (0.111) is greater than the level of significance (0.05), we fail to reject the null hypothesis.
Hence, the two nominal variables are related.
Learn more about Chi-square test statistics here:
https://brainly.com/question/2365682?referrer=searchResults