The movement of the balloon is an illustration of angular displacement.
The rate at which the angle of elevation is changing is 0.2 radian per minute
The parameters are given as:
[tex]\theta = \frac{\pi}{6}[/tex]
[tex]d = 300ft[/tex]
[tex]v = 80ft\ min^{-1}[/tex]
See attachment for the balloon's elevation
The angular velocity (w) of an object is calculated as:
[tex]w = \frac vr[/tex]
Substitute 80 for v
[tex]w = \frac{80}r[/tex]
Considering the attached image
The value of r is calculated from the following cosine ratio
[tex]\cos(\theta) = \frac{300}{r}[/tex]
Make r the subject
[tex]r = \frac{300}{\cos(\theta)}[/tex]
Substitute [tex]\theta = \frac{\pi}{6}[/tex]
[tex]r = \frac{300}{\cos(\frac{\pi}6)}[/tex]
Substitute [tex]r = \frac{300}{\cos(\frac{\pi}6)}[/tex] in [tex]w = \frac{80}r[/tex]
[tex]w = \frac{80}{\frac{300}{\cos(\frac{\pi}6)}}[/tex]
In trigonometry ratios:
[tex]\cos(\frac{\pi}6)} = \frac{\sqrt 3}{2}[/tex]
So, we have:
[tex]w = \frac{80}{\frac{300}{\frac{\sqrt 3}2}}[/tex]
This gives:
[tex]w = \frac{80}{\frac{600}{\sqrt 3}}[/tex]
[tex]w = \frac{80\sqrt 3}{600}[/tex]
[tex]w = 0.2309[/tex]
Approximate
[tex]w = 0.2[/tex]
Hence, the rate at which the angle of elevation changes is [tex]0.2\ rad\ min^{-1}[/tex]
Read more about angular displacement at:
https://brainly.com/question/13902407