Respuesta :
Answer:
[tex]h = \frac{3V}{b}[/tex]
Step-by-step explanation:
Given the formula, [tex]V = \frac{1}{3}bh[/tex]:
Start with isolating b from the right-hand side of the equation by using the multiplicative inverse of b, which is [tex]\frac{1}{b}[/tex]. Multiply both sides of the equation by [tex](\frac{1}{b})[/tex] :
[tex]V (\frac{1}{b}) = \frac{1}{3}bh (\frac{1}{b})[/tex]
[tex]\frac{V}{b} = \frac{1}{3}h[/tex]
Next, isolate h by using the multiplicative inverse of [tex]\frac{1}{3}[/tex], which is [tex]\frac{3}{1}[/tex]. Multiply both sides of the equation by [tex](\frac{3}{1})[/tex] :
[tex]\frac{V}{b} (\frac{3}{1}) = (\frac{3}{1}) \frac{1}{3}h[/tex]
[tex]h = \frac{3V}{b}[/tex]
Hope my explanation helps :)
Answer:
Step-by-step explanation:
To solve this equation for h, multiply both sides by 3. We get:
3V = bh.
Dividing this result by b results in
3V
h = ----------
b